返回

万能数据

关灯
护眼
第四百四十四章 素数无限的证法
书签 上一页 目录 下一章 书架
最新网址:ltxsba.me

“法国数学家阿达马和比利时数学家瓦莱普森于 1896 年证明的素数定理中指出,n 以内的素数个数πn的渐近分布为πn~ nlnn,nlnn随 n 趋于无穷……”

“……由上,可得知对任意正整数 n 2,至少存在一个素数 p 使得 n ∓mp;lt; p ∓mp;lt; 2n。”程诺边说,一旁那位队友便在纸上唰唰的记着,双眼中满是掩饰不住的兴奋之色。

本以为程诺能提出一个新方向的证明方法,已经是实属难得,可未曾料想,程诺一气直接提出了两个。

但程诺让两的惊讶还在继续。

程诺瞥见记录的那位队友已经记完,清了清嗓子,开道,“再说第三个。”

“还有?”队友诧异出声。

“当然还有。”程诺笑呵呵的说道,望着揉着手腕的队友,“这才哪到哪!”

“第三种,利用代数数论的知识证明。利用代数数论手段证明素数有无穷多个的出发点之一是利用所谓的欧拉φ函数。”

“对任一正整数 n,欧拉φ函数的取值φn定义为:φn:不大于 n 且与 n 互素的正整数的个数。对任一素数 p,φp p 1,这个是因为 1,..., p 1 这 p 1 个不大于 p 的正整数显然都跟 p 互素。”

“然后,对两个不同的素数和 p2,φp1p2p1 1p2 1,这是因为……”

地址发布邮箱:Ltxsba@gmail.com 发送任意邮件即可!

书签 上一页 目录 下一章 书架